Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of sucrose-bound polynuclear iron oxyhydroxide nanoparticles on the efficiency of electron transport in the photosystem II membranes.

Identifieur interne : 000177 ( Main/Exploration ); précédent : 000176; suivant : 000178

Effect of sucrose-bound polynuclear iron oxyhydroxide nanoparticles on the efficiency of electron transport in the photosystem II membranes.

Auteurs : B Semin [Russie] ; L N Davletshina ; A B Rubin

Source :

RBID : pubmed:31098930

Descripteurs français

English descriptors

Abstract

Effect of water-soluble and stable sucrose-bound iron oxyhydroxide nanoparticles [Fe[III] sucrose complex (FSC)] on the efficiency of electron transport in the photosystem II membranes was studied. FSC significantly increases (by a factor 1.5) the rate of light-induced oxygen evolution in the presence of alternative electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ). Without DCBQ, FSC only slightly (5%) provides the oxygen evolution. Electron transport supported by pair DCBQ + FSC is inhibited by diuron. Maximum of stimulating effect was recorded at Fe(III) concentration 5 µM. In the case of another benzoquinone electron acceptor (2-phenyl-p-benzoquinone and 2,3-dimethyl-p-benzoquinone) and 2,6-dichlorophenolindophenol, stimulating effect of FSC was not observed. Incubation of PSII membranes at different concentrations with FSC is accompanied by binding of Fe(III) by membrane components but only about 50% of iron can be extracted by membranes from Fe(III) solution at pH 6.5. This result implies the heterogeneity of FSC solution in a buffer. The heterogeneity depends on pH and decreases with its rising. At pH around 9.0 Fe(III), sucrose solution is homogeneous. The study of pH effect has shown that stimulation of electron transport is induced only by iron cations which can be bound by membranes. Not extractable iron pool cannot activate electron transfer from oxygen-evolving complex to DCBQ.

DOI: 10.1007/s11120-019-00647-4
PubMed: 31098930


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of sucrose-bound polynuclear iron oxyhydroxide nanoparticles on the efficiency of electron transport in the photosystem II membranes.</title>
<author>
<name sortKey="Semin, B" sort="Semin, B" uniqKey="Semin B" first="B" last="Semin">B Semin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234. semin@biophys.msu.ru.</nlm:affiliation>
<country wicri:rule="url">Russie</country>
</affiliation>
</author>
<author>
<name sortKey="Davletshina, L N" sort="Davletshina, L N" uniqKey="Davletshina L" first="L N" last="Davletshina">L N Davletshina</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.</nlm:affiliation>
<wicri:noCountry code="subField">119234</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Rubin, A B" sort="Rubin, A B" uniqKey="Rubin A" first="A B" last="Rubin">A B Rubin</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.</nlm:affiliation>
<wicri:noCountry code="subField">119234</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31098930</idno>
<idno type="pmid">31098930</idno>
<idno type="doi">10.1007/s11120-019-00647-4</idno>
<idno type="wicri:Area/Main/Corpus">000142</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000142</idno>
<idno type="wicri:Area/Main/Curation">000142</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000142</idno>
<idno type="wicri:Area/Main/Exploration">000142</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effect of sucrose-bound polynuclear iron oxyhydroxide nanoparticles on the efficiency of electron transport in the photosystem II membranes.</title>
<author>
<name sortKey="Semin, B" sort="Semin, B" uniqKey="Semin B" first="B" last="Semin">B Semin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234. semin@biophys.msu.ru.</nlm:affiliation>
<country wicri:rule="url">Russie</country>
</affiliation>
</author>
<author>
<name sortKey="Davletshina, L N" sort="Davletshina, L N" uniqKey="Davletshina L" first="L N" last="Davletshina">L N Davletshina</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.</nlm:affiliation>
<wicri:noCountry code="subField">119234</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Rubin, A B" sort="Rubin, A B" uniqKey="Rubin A" first="A B" last="Rubin">A B Rubin</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.</nlm:affiliation>
<wicri:noCountry code="subField">119234</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Photosynthesis research</title>
<idno type="eISSN">1573-5079</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electron Transport (drug effects)</term>
<term>Ferric Compounds (pharmacology)</term>
<term>Nanoparticles (chemistry)</term>
<term>Oxygen (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Photosystem II Protein Complex (drug effects)</term>
<term>Solubility (MeSH)</term>
<term>Spinacia oleracea (metabolism)</term>
<term>Sucrose (chemistry)</term>
<term>Thylakoids (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe protéique du photosystème II (effets des médicaments et des substances chimiques)</term>
<term>Composés du fer III (pharmacologie)</term>
<term>Nanoparticules (composition chimique)</term>
<term>Oxygène (métabolisme)</term>
<term>Photosynthèse (MeSH)</term>
<term>Saccharose (composition chimique)</term>
<term>Solubilité (MeSH)</term>
<term>Spinacia oleracea (métabolisme)</term>
<term>Thylacoïdes (métabolisme)</term>
<term>Transport d'électrons (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Sucrose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Photosystem II Protein Complex</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Ferric Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Nanoparticules</term>
<term>Saccharose</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Electron Transport</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Complexe protéique du photosystème II</term>
<term>Transport d'électrons</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Spinacia oleracea</term>
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oxygène</term>
<term>Spinacia oleracea</term>
<term>Thylacoïdes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Composés du fer III</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Photosynthesis</term>
<term>Solubility</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Photosynthèse</term>
<term>Solubilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Effect of water-soluble and stable sucrose-bound iron oxyhydroxide nanoparticles [Fe[III] sucrose complex (FSC)] on the efficiency of electron transport in the photosystem II membranes was studied. FSC significantly increases (by a factor 1.5) the rate of light-induced oxygen evolution in the presence of alternative electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ). Without DCBQ, FSC only slightly (5%) provides the oxygen evolution. Electron transport supported by pair DCBQ + FSC is inhibited by diuron. Maximum of stimulating effect was recorded at Fe(III) concentration 5 µM. In the case of another benzoquinone electron acceptor (2-phenyl-p-benzoquinone and 2,3-dimethyl-p-benzoquinone) and 2,6-dichlorophenolindophenol, stimulating effect of FSC was not observed. Incubation of PSII membranes at different concentrations with FSC is accompanied by binding of Fe(III) by membrane components but only about 50% of iron can be extracted by membranes from Fe(III) solution at pH 6.5. This result implies the heterogeneity of FSC solution in a buffer. The heterogeneity depends on pH and decreases with its rising. At pH around 9.0 Fe(III), sucrose solution is homogeneous. The study of pH effect has shown that stimulation of electron transport is induced only by iron cations which can be bound by membranes. Not extractable iron pool cannot activate electron transfer from oxygen-evolving complex to DCBQ.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31098930</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5079</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>142</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Photosynthesis research</Title>
<ISOAbbreviation>Photosynth Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Effect of sucrose-bound polynuclear iron oxyhydroxide nanoparticles on the efficiency of electron transport in the photosystem II membranes.</ArticleTitle>
<Pagination>
<MedlinePgn>57-67</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11120-019-00647-4</ELocationID>
<Abstract>
<AbstractText>Effect of water-soluble and stable sucrose-bound iron oxyhydroxide nanoparticles [Fe[III] sucrose complex (FSC)] on the efficiency of electron transport in the photosystem II membranes was studied. FSC significantly increases (by a factor 1.5) the rate of light-induced oxygen evolution in the presence of alternative electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ). Without DCBQ, FSC only slightly (5%) provides the oxygen evolution. Electron transport supported by pair DCBQ + FSC is inhibited by diuron. Maximum of stimulating effect was recorded at Fe(III) concentration 5 µM. In the case of another benzoquinone electron acceptor (2-phenyl-p-benzoquinone and 2,3-dimethyl-p-benzoquinone) and 2,6-dichlorophenolindophenol, stimulating effect of FSC was not observed. Incubation of PSII membranes at different concentrations with FSC is accompanied by binding of Fe(III) by membrane components but only about 50% of iron can be extracted by membranes from Fe(III) solution at pH 6.5. This result implies the heterogeneity of FSC solution in a buffer. The heterogeneity depends on pH and decreases with its rising. At pH around 9.0 Fe(III), sucrose solution is homogeneous. The study of pH effect has shown that stimulation of electron transport is induced only by iron cations which can be bound by membranes. Not extractable iron pool cannot activate electron transfer from oxygen-evolving complex to DCBQ.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Semin</LastName>
<ForeName>B К</ForeName>
<Initials></Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0058-2798</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234. semin@biophys.msu.ru.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davletshina</LastName>
<ForeName>L N</ForeName>
<Initials>LN</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rubin</LastName>
<ForeName>A B</ForeName>
<Initials>AB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Photosynth Res</MedlineTA>
<NlmUniqueID>100954728</NlmUniqueID>
<ISSNLinking>0166-8595</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005290">Ferric Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2UA751211N</RegistryNumber>
<NameOfSubstance UI="C021024">ferric hydroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>57-50-1</RegistryNumber>
<NameOfSubstance UI="D013395">Sucrose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005290" MajorTopicYN="N">Ferric Compounds</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="N">Photosystem II Protein Complex</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018724" MajorTopicYN="N">Spinacia oleracea</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013395" MajorTopicYN="N">Sucrose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020524" MajorTopicYN="N">Thylakoids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Artificial electron acceptors</Keyword>
<Keyword MajorTopicYN="N">Iron sucrose complex</Keyword>
<Keyword MajorTopicYN="N">Nanoparticles</Keyword>
<Keyword MajorTopicYN="N">Oxygen-evolving complex</Keyword>
<Keyword MajorTopicYN="N">Photosystem II</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31098930</ArticleId>
<ArticleId IdType="doi">10.1007/s11120-019-00647-4</ArticleId>
<ArticleId IdType="pii">10.1007/s11120-019-00647-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2001 Oct 2;40(39):11912-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11570892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 May 7;41(18):5854-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11980489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1963 Feb 5;69:313-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14020243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Dec 25;267(36):25816-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1464595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Jun 1;43(21):6772-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15157111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2004 Nov;98(11):1757-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosens Bioelectron. 2005 Apr 15;20(10):1984-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15741067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 11;310(5750):1019-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Mar;1757(3):189-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16564021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Jan 12;49(1):36-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19947648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharm Biopharm. 2011 Aug;78(3):480-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21439379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21499260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jan;1817(1):44-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21679684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Aug 31;133(34):13260-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21809858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Jan;1817(1):26-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21835158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharm Dev Technol. 2014 Aug;19(5):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23701359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Jul 09;5:4371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25006873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Oct;1837(10):1625-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25062950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jan 1;517(7532):99-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25470056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2015 Jun 18;119(24):7722-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25715889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Jul 8;137(26):8541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26046591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2016 Jun;48(3):227-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26847716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pharm. 2016 May 30;505(1-2):167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27001529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Dec 15;540(7633):453-457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27871088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2018 Apr;136(1):83-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28895009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2018 Jan;178:192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29156347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2018 Sep;137(3):421-429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29767343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2018 Sep;130:408-417</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30064097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2018 Oct 18;19(20):2152-2155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30246911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1973 Apr 27;305(1):29-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4198184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Nov 20;375(3):223-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7498504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 1995 Jun;58(4):269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7500088</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Russie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Davletshina, L N" sort="Davletshina, L N" uniqKey="Davletshina L" first="L N" last="Davletshina">L N Davletshina</name>
<name sortKey="Rubin, A B" sort="Rubin, A B" uniqKey="Rubin A" first="A B" last="Rubin">A B Rubin</name>
</noCountry>
<country name="Russie">
<noRegion>
<name sortKey="Semin, B" sort="Semin, B" uniqKey="Semin B" first="B" last="Semin">B Semin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000177 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000177 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31098930
   |texte=   Effect of sucrose-bound polynuclear iron oxyhydroxide nanoparticles on the efficiency of electron transport in the photosystem II membranes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31098930" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020